Model-based structural damage identification using vibration measurements

نویسندگان

  • Antti Huhtala
  • Rolf Stenberg
  • Sven Bossuyt
  • Tuomo Kauranne
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Antti Huhtala Name of the doctoral dissertation Model-based structural damage identification using vibration measurements Publisher School of Science Unit Department of Mathematics and Systems Analysis Series Aalto University publication series DOCTORAL DISSERTATIONS 30/2015 Field of research Mechanics Manuscript submitted 15 December 2014 Date of the defence 20 March 2015 Permission to publish granted (date) 3 February 2015 Language English Monograph Article dissertation (summary + original articles) Abstract In structural health monitoring (SHM), a structure is continuously monitored with a set of embedded sensors. Damage identification is the part of a SHM system, in which the damage state of the structure is determined from obtained measurements. More specifically, the presence of damage is detected, and its location and severity are estimated. Even if the measured quantities are known to be sensitive to damage, the reconstruction of damage from the measurement is generally not well-posed, since significantly different damage states may still produce similar measurement results. Damage identification is thus an inverse problem. In this thesis, a model-based approach using vibration measurements is taken. The vibration of the structure is measured using several sensors, which can be for instance strain gauges, gyroscopes or accelerometers. A model of the structure, including a model of how the damage affects the structure and a model of the measurement sensors, is then used to simulate the measurements. Damage identification is achieved through finding a plausible damage state of the model which reproduces the actual measurements as simulated measurements. Most of the work in this thesis is on damage identification using Bayesian inference, while taking the measurements as mode frequencies and mode shapes of the structure. A multivariate normal distributed noise term is included in the measurement model, which allows taking into account the measurement error and also a large part of the model error. The knowledge of plausible damage states is described using a prior distribution, which is merged with the information obtained through measurement using Bayesian inference. Other approaches to the damage identification problem are also discussed in the work. The Kalman filter can be used for damage identification by augmenting the state vector of the vibrating structure with parameters of the damage state. The state estimate then gives the damage parameters along with the other state components. While this approach is more sensitive to model errors, it could be used for real-time damage identification for a continuous assessment of the damage state. The method of sigma algebras on contour maps (SACOM) uses the same noise distribution as the Bayesian approach, and like the Bayesian approach also gives a probability distribution for the damage state. However, in this approach the distribution is obtained by mapping the noise distribution through the set-valued inverse of the structure model. Finally, a brief discussion is given on the possibility of formulating the damage identification problem as an inverse source problem. As the resulting problem is linear, it gives greater opportunity for a thorough mathematical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW APPROACH BASED ON FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL DAMAGE IDENTIFICATION

In this study, the finite element model updating was simulated by reducing the stiffness of the members. Due to lack of access to the experimental results, the data obtained from an analytical model were used in the proposed structural damage scenarios. The updating parameters for the studied structures were defined as a reduction coefficient applied to the stiffness of the members. Parameter v...

متن کامل

Structural Damage Identification of Plate Structures based on Frequency Response Function and Natural Frequencies

In this paper, a structural damage identification method (SDIM) is developed for plate-like structures. This method is derived using dynamic equation of undamaged/damaged plate, in which local change in flexural rigidity is characterized utilizing a damage distribution function. The SDIM requires to modal data in the intact state and frequency response of damage state where most of vibration ba...

متن کامل

The State-of-the-Art on Framework of Vibration-Based Structural Damage Identification for Decision Making

Research on detecting structural damage at the earliest possible stage has been an interesting topic for decades. Among them, the vibration-based damage detection method as a global technique is especially pervasive. The present study reviewed the state-of-the-art on the framework of vibration-based damage identification in different levels including the prediction of the remaining useful life ...

متن کامل

GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS

This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...

متن کامل

Title: Performance Comparison of Different Autoregressive Damage Features Using Acceleration Measurements from a Truss Bridge

Time series analysis has been applied to structural monitoring signals for system damage identification in a number of research literatures. Among various time series analysis tools, univariate autoregressive modeling (AR) is one of the most commonly used methods because of its innate computational efficiency. In this paper, three autoregressive damage features extracted directly from the ambie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015